4.6 Article

Calorimetric investigation of the interaction between lithium perfluorononanoate and poly(ethylene glycol) oligomers in water

Journal

LANGMUIR
Volume 22, Issue 19, Pages 8001-8009

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/la0609930

Keywords

-

Ask authors/readers for more resources

The interaction of lithium perfluorononanoate (LiPFN) with poly(ethylene glycol) (PEG) molecules of different molecular weights (300 < MW < 20000 Da) has been investigated in water at 298.15 and 308.15 K by isothermal titration calorimetry (ITC). Density, viscosity, and conductivity measurements were also performed at 298.15 K. The aggregation process of this surfactant on the PEG polymeric chain was found to be very similar to that exhibited by cesium perfluorooctanoate (CsPFO) and appears to be consistent with the necklace model. ITC titrations indicated that a fully formed LiPFN micellar cluster can be wrapped by a PEG chain having a molecular weight (MW) of similar to 3200 Da, longer than that required by the shorter perfluorooctanoate (MW similar to 2600 Da), and also suggested a stepwise mechanism for the aggregation of successive micelles. Viscosity data indicate that the formation of polymer-surfactant complexes between PEG and LiPFN involves a conformational change of the polymer. The aggregation of preformed micelles of LiPFN or CsPFO or SDS on the PEG polymeric chain always gives rise to further stabilization.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available