4.8 Article

Coherent peaks and minimal probing depth in photoemission spectroscopy of Mott-Hubbard systems

Journal

PHYSICAL REVIEW LETTERS
Volume 97, Issue 11, Pages -

Publisher

AMERICAN PHYSICAL SOC
DOI: 10.1103/PhysRevLett.97.116401

Keywords

-

Ask authors/readers for more resources

We have measured hard x-ray photoemission spectra of pure vanadium sesquioxide (V2O3) across its metal-insulator transition. We show that, in the metallic phase, a clear correlation exists between the shakedown satellites observed in the vanadium 2p and 3p core-level spectra and the coherent peak measured at the Fermi level. Comparing experimental results and dynamical mean-field theory calculations, we estimate the Hubbard energy U in V2O3 (4.20 +/- 0.05 eV). From our bulk-sensitive photoemission spectra we infer the existence of a critical probing depth for investigating electronic properties in strongly correlated solids.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available