4.5 Article

Crystal structure of the SENP1 mutant C603S-SUMO complex reveals the hydrolytic mechanism of SUMO-specific protease

Journal

BIOCHEMICAL JOURNAL
Volume 398, Issue -, Pages 345-352

Publisher

PORTLAND PRESS LTD
DOI: 10.1042/BJ20060526

Keywords

conjugation; cysteine protease; de-conjugation; maturation; small ubiquitin-related modifier (SUMO); thioester linkage

Ask authors/readers for more resources

SUMO (small ubiquitin-related modifier)-specific proteases catalyse the maturation and de-conjugation processes of the sumoylation pathway and modulate various cellular responses including nuclear metabolism and cell cycle progression. The active-site cysteine residue is conserved among all known SUMO-specific proteases and is not substitutable by serine in the hydrolysis reactions demonstrated previously in yeast. We report here that the catalytic domain of human protease SENP1 (SUMO-specific protease 1) mutant SENP1C(C603S) carrying a mutation of cysteine to serine at the active site is inactive in maturation and de-conjugation reactions. To further understand the hydrolytic mechanism catalysed by SENP1, we have determined, at 2.8 angstrom resolution (1 (A) over dot = 0.1 nm), the X-ray structure of SENP1C(C603S)-SUMO-1 complex. A comparison of the structure of SENP2-SUMO-1 suggests strongly that SUMO-specific proteases require a self-conformational change prior to cleavage of peptide or isopeptide bond in the maturation and de-conjugation processes respectively. Moreover, analysis of the interface of SENP1 and SUMO-1 has led to the identification of four unique amino acids in SENP1 that facilitate the binding of SUMO-1. By means of an in vitro assay, we further demonstrate a novel function of SENP1 in hydrolysing the thioester linkage in E1-SUMO and E2-SUMO complexes. The results disclose a new mechanism of regulation of the sumoylation pathway by the SUMO-specific proteases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available