4.5 Article

Plasticity within striatal direct pathway neurons after neonatal dopamine depletion is mediated through a novel functional coupling of serotonin 5-HT2 receptors to the ERK 1/2 map kinase pathway

Journal

JOURNAL OF COMPARATIVE NEUROLOGY
Volume 498, Issue 3, Pages 415-430

Publisher

WILEY
DOI: 10.1002/cne.21034

Keywords

striatum; receptor coupling; serotonin

Funding

  1. Intramural NIH HHS [Z01 MH002497-18, Z01 MH002497-16] Funding Source: Medline

Ask authors/readers for more resources

Dysfunction within the striatal direct and indirect projecting systems arises after 6-hydroxydopamine (6-OHDA)-induced dopamine depletion, highlighting the central regulatory function of dopamine in motor systems. However, the striatal 5-hydroxytryptamine (5-HT) innervation remains intact after 6-OHDA lesions, suggesting that the 5-HT system may contribute to the lesion-induced dysfunction, or alternatively, it may adapt and compensate for the dopamine deficit. Neonatal 6-OHDA lesions actually give rise to a 5-HT axonal hyperinnervation within the dorsal striatum, further reinforcing the idea that the 5-HT system plays a central role in striatal function after dopamine depletion. Here we show that neonatal but not adult 6-OHDA lesions result in a novel coupling of 5-HT, receptors to the ERK1/2/MAP Kinase pathway, a signaling cascade known to regulate neuronal plasticity. Chloroamphetamine-induced 5-HT release or direct stimulation of striatal 5-HT, receptors via the 5-HT, agonist DOI, produced robust ERK1/2 phosphorylation throughout the dorsal striatum of neonatal lesioned animals, a response not observed within the intact striatum. Pretreatment with the select 5-HT, receptor antagonist Ketanserin blocked DOI-induced ERK1/2 phosphorylation. This drug-induced ERK1/2 phosphorylation was subsequently shown to be restricted to direct pathway striatal neurons. Our data show that adaptation of direct pathway neurons after neonatal 6-OHDA lesions involves coupling of 5-HT, receptors to the ERK1/2/MAP Mnase cascade, a pathway not typically active in these neurons. Because dopamine-mediated signaling is redundant after 6-OHDA lesions, 5-HT-mediated stimulation of the ERK1/2/MAP Mnase pathway may provide an alternative signaling route allowing the regulation of neuronal gene expression and neuronal plasticity in the absence of dopamine.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available