4.5 Article

ZnO multipods, submicron wires, and spherical structures and their unique field emission behavior

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 110, Issue 37, Pages 18236-18242

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp0628131

Keywords

-

Ask authors/readers for more resources

A simple method of vapor deposition for the shape selective synthesis of ZnO structures, namely, multipods, submicron wires, and spheres, has been successfully demonstrated. A plausible growth mechanism based on the studies of scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) is proposed. Our studies suggest that the growth of a multipod structure is governed by the screw dislocation propagation while the vapor-liquid-solid (VLS) mechanism is responsible for the formation of submicron wires and spheres. Moreover, the flow rate of the carrier gas plays a crucial role in governing the morphology. Further, these structures exhibit an enhanced field emission behavior. The nonlinearity in the Fowler-Nordheim (F-N) plot, a characteristic feature of electron emission from semiconductors, is explained by considering the contributions from both the conduction and the valence bands of ZnO.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available