4.8 Article

A complexin/synaptotagmin 1 switch controls fast synaptic vesicle exocytosis

Journal

CELL
Volume 126, Issue 6, Pages 1175-1187

Publisher

CELL PRESS
DOI: 10.1016/j.cell.2006.08.030

Keywords

-

Ask authors/readers for more resources

Ca2+ binding to synaptotagmin 1 triggers fast exocytosis of synaptic vesicles that have been primed for release by SNARE-complex assembly. Besides synaptotagmin 1, fast Ca2+-triggered exocytosis requires complexins. Synaptotagmin 1 and complexins both bind to assembled SNARE complexes, but it is unclear how their functions are coupled. Here we propose that complexin binding activates SNARE complexes into a metastable state and that Ca2+ binding to synaptotagmin 1 triggers fast exocytosis by displacing complexin from metastable SNARE complexes. Specifically, we demonstrate that, biochemically, synaptotagmin 1 competes with complexin for SNARE-complex binding, thereby dislodging complexin from SNARE complexes in a Ca2+-dependent manner. Physiologically, increasing the local concentration of complexin selectively impairs fast Ca2+-triggered exocytosis but retains other forms of SNARE-dependent fusion. The hypothesis that Ca2+-induced displacement of complexins from SNARE complexes triggers fast exocytosis accounts for the loss-of-function and gain-of-function phenotypes of complexins and provides a molecular explanation for the high speed and synchronicity of fast Ca2+-triggered neurotransmitter release.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available