4.8 Article

Chitosan-poly(vinyl pyrrolidone) blends as membranes for direct methanol fuel cell applications

Journal

JOURNAL OF POWER SOURCES
Volume 159, Issue 2, Pages 846-854

Publisher

ELSEVIER
DOI: 10.1016/j.jpowsour.2005.12.032

Keywords

fuel cells; CS blend membranes; DMFC; ion exchange capacity; methanol permeability

Ask authors/readers for more resources

Blend membranes made of chitosan (CS) and poly(vinyl pyrrolidone) (PVP), were synthesized and characterized for their ion exchange capacity (IEC) and Swelling Index to investigate their applicability in direct methanol fuel cells (DMFC). These membranes were assessed for their intermolecular interactions and thermal stability using FT-IR, X-ray diffraction methods, and TGA. Their methanol permeability and proton conductivity were also estimated and compared to that of Nation 117. In addition to being effective methanol barriers, the membranes have a high ion exchange capacity (IEC) and possess adequate thermal stability. Crosslinking the polymer blend using glutaraldehyde and sulfuric acid has been particularly effective in producing a reduction of methanol permeability from 9.2 x 10(-8) cm(2) s(-1) for CS/PVP blend to 7.3 x 10(-8) cm(2) S-1 for crosslinked CS/PVP blend (GS-CS/PVP) and enhancing the conductivity from 0.019 S cm(-1) for CS/PVP blend to 0.024 S cm(-1) for GS-CS/PVP, thereby rendering it more suitable for a DMFC. Low methanol permeability, excellent physico-mechanical properties and above all, the cost effectiveness could make their use in DMFC quite attractive. (c) 2006 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available