4.8 Article

Time-reversible Born-Oppenheimer molecular dynamics

Journal

PHYSICAL REVIEW LETTERS
Volume 97, Issue 12, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.97.123001

Keywords

-

Ask authors/readers for more resources

We present a time-reversible Born-Oppenheimer molecular dynamics scheme, based on self-consistent Hartree-Fock or density functional theory, where both the nuclear and the electronic degrees of freedom are propagated in time. We show how a time-reversible adiabatic propagation of the electronic degrees of freedom is possible despite the nonlinearity and incompleteness of the self-consistent field procedure. With a time-reversible lossless propagation the simulated dynamics is stabilized with respect to a systematic long-term energy drift and the number of self-consistency cycles can be kept low thanks to a good initial guess given from the electronic propagation. The proposed molecular dynamics scheme therefore combines a low computational cost with a physically correct time-reversible representation, which preserves a detailed balance between propagation forwards and backwards in time.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available