4.7 Article Proceedings Paper

The Hofmeister series effect in adsorption of cationic surfactants - theoretical description and experimental results

Journal

ADVANCES IN COLLOID AND INTERFACE SCIENCE
Volume 122, Issue 1-3, Pages 39-55

Publisher

ELSEVIER
DOI: 10.1016/j.cis.2006.06.017

Keywords

-

Ask authors/readers for more resources

Interfacial properties of cationic surfactants show strong dependence on the type of surfactant counterion or on the type of anion of a salt added to the surfactant solution. In the paper, the models of ionic surfactant adsorption that can take into account ionic specific effects are reviewed. Model of ionic surfactant adsorption based on the assumption that the surfactant ions and counterions undergo nonequivalent adsorption within the Stem layer was selected to describe experimental surface tension isotherms of aqueous solutions of a number of cationic surfactants. The experimental isotherms for: n-alkyl trimethylammonium cationic surfactants, namely: C(16)TABr (CTABr or CTAB), C(16)TACl, C(16)TAHSO(4), C(10)TABr and C(12)TABr as well as decyl- and dodecylpyridinium salts with and without various electrolyte anions as Cl-, Br-, F-, I-, NO3-, ClO4- and CH3COO- were described in terms of the model and a good agreement between the theory and experiment was obtained for a wide range of surfactants and added electrolyte concentrations. A very pronounced Hofmeister effect in dependence of surface tension of cationic surfactants on the type of anion was found. Analysing this dependence in terms of the proposed model of ionic surfactant adsorption, strong correlation between anion surface activity (the model parameter accounting for ion penetration into the Stem layer), and the ion polarizability was obtained. That suggests that the mechanism related to the dispersive interaction of polarized ion with electric field at interface is responsible for Hofmeister series effects in surface activity of cationic surfactants. The same mechanism was proposed recently to explain the dependence of surface tension increase with electrolyte concentration on anion and cation type. (c) 2006 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available