4.7 Article

Predicting the temperature dependence of microbial respiration in soil: A continental-scale analysis

Journal

GLOBAL BIOGEOCHEMICAL CYCLES
Volume 20, Issue 3, Pages -

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2005GB002644

Keywords

-

Ask authors/readers for more resources

The production of CO2 by soil microorganisms is an important component of the global carbon cycle, and its temperature sensitivity is poorly constrained in global models. To improve our understanding of the factors controlling the temperature dependence of soil microbial respiration, we analyzed the temperature sensitivity of labile soil organic carbon decomposition for 77 soils collected from a wide array of ecosystem types. Across all of the soils, the average Q(10) value ( the factor by which decomposition rates increase for a 10 degrees C increase in temperature) was 3.0, but the range in Q(10) values was substantial ( 2.2 to 4.6). A large percentage ( 45%) of the variation in Q(10) values could be explained by the relative rate of microbial respiration per unit organic C, an analog for C quality. This result provides support for the carbon quality- temperature'' hypothesis that directly links the temperature dependence of microbial decomposition and the biochemical recalcitrance of soil organic carbon. A smaller percentage ( 17%) of the variability in Q(10) values could be explained by the mean monthly temperature at the time of sampling, suggesting that microbial communities may adapt to the antecedent temperature regime. By showing that the Q(10) of microbial respiration in soil is largely predictable under standardized incubation conditions, this work increases our understanding of the temperature sensitivity of labile soil organic carbon stores.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available