4.7 Article

Reduced cardiac L-type Ca2+ current in Cavβ2-/- embryos impairs cardiac development and contraction with secondary defects in vascular maturation

Journal

CIRCULATION RESEARCH
Volume 99, Issue 7, Pages 749-757

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/01.RES.0000243978.15182.c1

Keywords

L-type Ca2+ channel; cardiac development; Ca-v ss(2) subunit; heart failure; embryonic death

Ask authors/readers for more resources

Cardiac myocyte contraction depends on transmembrane L-type Ca2+ currents and the ensuing release of Ca2+ from the sarcoplasmic reticulum. Here we show that these L-type Ca2+ currents are essential for cardiac pump function in the mouse at developmental stages where the functional significance of the heart becomes imperative to blood flow and to the continuing growth and survival of the embryo. Disruption of the Ca-v beta(2) gene, which encodes for the predominant ancillary beta subunit of cardiac Ca2+ channels, resulted in diminished L-type Ca2+ currents in cardiomyocytes of embryonic day 9.5 (E9.5). This led to a functionally compromised heart, causing defective remodeling of intra- and extraembryonic blood vessels and embryonic death following E10.5. The defects in vascular remodeling were also observed when the Ca-v beta(2) gene was selectively targeted in cardiomyocytes, demonstrating that they are secondary to cardiac failure rather than a result of the lack of Ca-v beta(2) proteins in the vasculature. Partial rescue of the Ca2+ channel currents by a Ca2+ channel agonist significantly postponed embryonic death in Ca-v beta(-/-)(2) mice. Taken together, these data strongly support the essential role of L-type Ca2+ channel activity in cardiomyocytes for normal heart development and function and that this is a prerequisite for proper maturation of the vasculature.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available