4.6 Review

Cellular consequences of sleep deprivation in the brain

Journal

SLEEP MEDICINE REVIEWS
Volume 10, Issue 5, Pages 307-321

Publisher

W B SAUNDERS CO LTD
DOI: 10.1016/j.smrv.2006.04.001

Keywords

sleep loss; cerebral cortex; synaptic plasticity; rat; microarray

Ask authors/readers for more resources

Several recent studies have used transcriptomics approaches to characterize the molecular correlates of sleep, waking, and sleep deprivation. This analysis may help in understanding the benefits that sleep brings to the brain at the cellular level. The studies are still limited in number and focus on a few brain regions, but some consistent findings are emerging. Sleep, spontaneous wakefulness, short-term, and long-term sleep deprivation are each associated with the upregulation of hundreds of genes in the cerebral cortex and other brain areas. In fruit flies as well as in mammals, three categories of genes are consistently upregulated during waking and short-term sleep deprivation relative to sleep. They include genes involved in energy metabolism, synaptic potentiation, and the response to cellular stress. In the rat cerebral cortex, transcriptional changes associated with prolonged sleep loss differ significantly from those observed during short-term sleep deprivation. However, it is too early to draw firm conclusions relative to the molecular consequences of sleep deprivation, and more extensive studies using DNA and protein arrays are needed in different species and in different brain regions. (C) 2006 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available