4.4 Article Proceedings Paper

Modeling AAA+ ring complexes from monomeric structures

Journal

JOURNAL OF STRUCTURAL BIOLOGY
Volume 156, Issue 1, Pages 230-243

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jsb.2006.04.011

Keywords

AAA; molecular modeling; ClpB; Apaf-1; apoptosome; MalT

Ask authors/readers for more resources

AAA+ proteins form large, ring-shaped complexes, which act as energy-dependent unfoldases of macromolecules. Many crystal structures of proteins in this superfamily have been determined, but mostly in monomeric or non-physiological oligomeric forms. The assembly of ring-shaped complexes from monomer coordinates is, therefore, of considerable interest. We have extracted structural features of complex formation relating to the distance of monomers from the central axis, their relative orientation and the molecular contacts at their interfaces from experimentally determined oligomers and have implemented a semi-automated modeling procedure based on Rosetta-Dock into the iMolTalk server (http://protevo.eb.tuebingen.mpg.de/iMolTalk). As examples of this procedure, we present here models of Apaf-1, MalT and ClpB. We show that the recent EM-based model of the apoptosome is not compatible with the conserved structural features of AAA+ complexes and that the D1 and D2 rings of ClpB are most likely offset by one subunit, in agreement with the structure proposed for ClpA. (c) 2006 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available