4.5 Article

Mechanical ventilation promotes redox status alterations in the diaphragm

Journal

JOURNAL OF APPLIED PHYSIOLOGY
Volume 101, Issue 4, Pages 1017-1024

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/japplphysiol.00104.2006

Keywords

muscle wasting; atrophy; oxidative stress; superoxide dismutase; catalase; glutathione; heme oxygenase; thioredoxin reductase

Funding

  1. NHLBI NIH HHS [R01-HL-62361] Funding Source: Medline
  2. NICHD NIH HHS [T32-HD-043730] Funding Source: Medline

Ask authors/readers for more resources

Oxidative stress is an important mediator of diaphragm muscle atrophy and contractile dysfunction during prolonged periods of controlled mechanical ventilation (MV). To date, specific details related to the impact of MV on diaphragmatic redox status remain unknown. To fill this void, we tested the hypothesis that MV-induced diaphragmatic oxidative stress is the consequence of both an elevation in intracellular oxidant production in conjunction with a decrease in the antioxidant buffering capacity. Adult rats were assigned to one of two experimental groups: 1) control or 2) 12 h of MV. Compared with controls, diaphragms from MV animals demonstrated increased oxidant production, diminished total antioxidant capacity, and decreased glutathione levels. Heme oxygenase-1 (HO-1) mRNA and protein levels increased (23.0 and 5.1-fold, respectively) following MV. Thioredoxin reductase-1 and manganese superoxide dismutase mRNA levels were also increased in the diaphragm following MV (2.4- and 1.6-fold, respectively), although no change was detected in the levels of either protein. Furthermore, copper-zinc superoxide dismutase and glutathione peroxidase mRNA were not altered following MV, although protein content decreased -1.3- and -1.7-fold, respectively. We conclude that MV promotes increased oxidant production and impairment of key antioxidant defenses in the diaphragm; collectively, these changes contribute to the MV-induced oxidative stress in this key inspiratory muscle.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available