4.0 Article

Gene expression profiling reveals platelet-derived growth factor receptor alpha as a target of cell contact-dependent gene regulation in an endothelial cell-osteoblast co-culture model

Journal

TISSUE ENGINEERING
Volume 12, Issue 10, Pages 2889-2903

Publisher

MARY ANN LIEBERT INC
DOI: 10.1089/ten.2006.12.2889

Keywords

-

Ask authors/readers for more resources

Angiogenesis plays an important role in bone development, repair, and remodelling. Neovascularization is furthermore a crucial step in bone tissue engineering because implantation of voluminous grafts without sufficient vascularity results in hypoxic cell death of the engineered tissue. We have previously described a co-cultivation system of human primary osteoblasts and human primary endothelial cells that was developed to improve neovascularization in bone tissue-engineering applications. In our present study, we have performed complementary deoxyribonucleic acid microarray analysis to analyze putative changes in osteoblastic gene expression upon co-cultivation of osteoblasts and endothelial cells. Transcriptional profiling revealed upregulation of 79 genes and downregulation of 62 genes in osteoblasts after co-cultivation with endothelial cells. To verify the microarray data, quantitative real-time reverse transcriptase polymerase chain reaction was carried out on selected genes. The expression of the platelet-derived growth factor receptor alpha gene in osteoblasts was analyzed in more detail, revealing that a cell contact-dependent mechanism, and not paracrine-acting diffusible factors, mediates the downregulation of this receptor in osteoblasts upon co-cultivation with endothelial cells. In summary, the data demonstrate complex gene-regulation mechanisms between endothelial cells and osteoblasts that are likely to play a role in bone morphogenesis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available