4.6 Article

Electric-dipole-induced spin resonance in quantum dots

Journal

PHYSICAL REVIEW B
Volume 74, Issue 16, Pages -

Publisher

AMERICAN PHYSICAL SOC
DOI: 10.1103/PhysRevB.74.165319

Keywords

-

Ask authors/readers for more resources

An alternating electric field, applied to a quantum dot, couples to the electron spin via the spin-orbit interaction. We analyze different types of spin-orbit coupling known in the literature and find two efficient mechanisms of spin control in quantum dots. The linear in momentum Dresselhaus and Rashba spin-orbit couplings give rise to a fully transverse effective magnetic field in the presence of a Zeeman splitting at lowest order in the spin-orbit interaction. The cubic in momentum Dresselhaus terms are efficient in a quantum dot with anharmonic confining potential and give rise to a spin-electric coupling proportional to the orbital magnetic field. We derive an effective spin Hamiltonian, which can be used to implement spin manipulation on a time scale of 10 ns with the current experimental setups.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available