4.5 Article Proceedings Paper

Biodegradable porous polyurethane scaffolds for tissue repair and regeneration

Journal

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A
Volume 79A, Issue 1, Pages 128-138

Publisher

WILEY
DOI: 10.1002/jbm.a.30708

Keywords

biodegradable polyurethanes; 3D scaffolds; 1,4 : 3,6-dianhydro-D-sorbitol (isosorbide); tissue engineering; bone substitutes; cartilage repair

Ask authors/readers for more resources

Critical-size bone defects usually require the insertion of autogenous bone graft to heal. Harvesting of bone is traumatic and results in high morbidity at the donor site. A potential alternative to bone graft may be a bone substitute with adequate biocompatibility and biological properties produced from ceramics or bioresorbable/biodegradable polymers. In the present study, new elastomeric biodegradable polyurethanes with an enhanced affinity toward cells and tissues were synthesized using aliphatic diisocyanate, poly(E-caprolactone) diol, and biologically active 1,4:3,6-dianhydrO-D-sorbitol (isosorbide diol) as chain extender. The polymers were processed into 3D porous scaffolds by applying a combined salt leaching-phase inverse process. The critical parameters controlling pore size and geometry were the solvents and nonsolvents used for scaffold preparation and the sizes of the solid porogen crystals. Scaffolds prepared from the polymer solution in solvents such as dimethylsulfoxide or methyl-2-pyrrolidone did not have a homogenous pore structure. Many pores were interconnected, but numerous pores were closed. Irrespective of the high pore-to-volume ratio (75%), the scaffolds showed poor water permeability. The best solvent for the preparation of scaffolds from the polyurethane used in the study was dimethylformamide (DMF). The type of nonsolvent admixed to the polymer solution in DMF strongly affected the scaffolds' pore structure. The elastomeric polyurethane scaffold prepared from the optimal solvent-nonsolvent mixture had regular interconnected pores, high water permeability, and a pore-to-volume ratio of 90%. The osteoconductive properties of the 3D porous polyurethane scaffolds can be additionally promoted by loading them with calcium phosphate salts such as hydroxyapatite or tricalcium phosphate, thus making them promising candidates for bone graft substitutes. (c) 2006 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available