4.8 Article

PRL-3 initiates tumor angiogenesis by recruiting endothelial cells in vitro and in vivo.

Journal

CANCER RESEARCH
Volume 66, Issue 19, Pages 9625-9635

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/0008-5472.CAN-06-0726

Keywords

-

Categories

Ask authors/readers for more resources

We show here that PRL-3 protein is expressed in fetal heart, developing blood vessels, and pre-erythrocytes but not in their mature counterparts. These observations imply that PRL-3 may be involved in the early development of the circulatory system. Because PRL-3 mRNA had been reported to be consistently elevated in metastatic samples derived from colorectal cancers, we attempted to investigate if PRL-3 might be involved in tumor angiogenesis and if PRL-3-expressing cells could cross-talk to human umbilical vascular endothelial cells (HUVEC) by using an in vitro coculture system. HUVECs were grown with fibroblasts, which were later overlaid with PRL-3-expressing cells. We observed that both PRL-3-expressing Chinese hamster ovary (CHO) cells and PRL3-expressing DLD-1 human colon cancer cells could redirect the migration of HUVECs toward them; in addition, PRL3-expressing DLD-1 cells could enhance HUVEC vascular formation. In vivo injection of PRL-3-expressing CHO cells into nude mice to form local tumors resulted in the recruitment of host endothelial cells into the tumors and initiation of angiogenesis. We further showed that PRL3-expressing cells reduced interleukin-4 (IL-4) expression levels and thus attenuated IL-4 inhibitory effects on the HUVEC vasculature. Our findings provide direct evidence that PRL-3 may be involved in triggering angiogenesis and establishing microvasculature and it may serve as an attractive therapeutic target with respect to both angiogenesis and cancer metastasis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available