4.6 Article

Circadian regulation of arousal:: Role of the noradrenergic locus coeruleus system and light exposure

Journal

SLEEP
Volume 29, Issue 10, Pages 1327-1336

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1093/sleep/29.10.1327

Keywords

constant darkness; circadian sleep-waking rhythms; DSP-4; noradrenaline; norepinephrine; locus coeruleus; frontal cortex; rat

Funding

  1. NINDS NIH HHS [NS24698] Funding Source: Medline

Ask authors/readers for more resources

Study Objectives: Noradrenergic locus coeruleus (LC) neurons regulate arousal. Previous studies have shown that noradrenergic LC neurons exhibit a circadian rhythm in impulse activity, which peaks during the active period. This is mediated by an indirect circuit projection from the suprachiasmatic nucleus (SCN) to the LC. Here we sought to evaluate the hypothesis that the LC regulates the circadian properties of the sleep-wake cycle. \ Design: Sprague-Dawley rats maintained on a light-dark (LD) schedule or in constant darkness (DD) for 3 to 4 weeks were treated with DSP-4, a neurotoxic agent specific for noradrenergic-LC projections. Vigilance states were analyzed before and 3 weeks after LC lesion. The DSP-4 lesion was verified by immunohistochemistry of noradrenergic fibers in the frontal cortex. Setting: University of Pennsylvania. Patients or Participants: N/A. Interventions: N/A. Measurements and Results: DSP-4 decreased the amplitude of the sleep-wake rhythm in LD animals by significantly decreasing wakefulness and increasing sleep during the active period. However, DSP-4 had no effect on the sleep-wake cycle of DD animals. Moreover, DD itself decreased the amplitude of the sleep-wake cycle similar to that of the neurotoxic lesion of the noradrenergic system in LD animals. Analysis of noradrenergic fiber staining in the frontal cortex revealed that this effect was associated with fewer fibers or boutons in nonlesioned DD rats than in nonlesioned LD animals. Conclusions: Noradrenergic LC neurons provide a circadian regulation of the sleep-wake cycle, and the maintenance of LC function depends on light exposure. Light deprivation induces a loss of noradrenergic fibers, which in turn decreases the amplitude of the sleep-wake rhythm.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available