4.8 Article Proceedings Paper

Wireless-control strategy for parallel operation of distributed-generation inverters

Journal

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS
Volume 53, Issue 5, Pages 1461-1470

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TIE.2006.882015

Keywords

distributed generation (DG); droop control method; microgrids; nonlinear loads

Ask authors/readers for more resources

In this paper, a method for the parallel operation of inverters in an ac-distributed system is proposed. This paper explores the control of active and reactive power flow through the analysis of the output impedance of the inverters and its impact on the power sharing. As a result, adaptive virtual output impedance is proposed in order to achieve a proper reactive power sharing, regardless of the line-impedance unbalances. A soft-start operation is also included, avoiding the initial current peak, which results in a seamless hot-swap operation. Active power sharing is achieved by adjusting the frequency in load transient situations only, owing to which the proposed method obtains a constant steady-state frequency and amplitude. As opposed to the conventional droop method, the transient response can be modified by acting on the main control parameters. Linear and nonlinear loads can be properly shared due to the addition of a current harmonic loop in the control strategy. Experimental results are presented from a two-6-kVA parallel-connected inverter system, showing the feasibility of the proposed approach.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available