4.4 Article

The successive-order-of-interaction radiative transfer model. Part I: Model development

Journal

JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY
Volume 45, Issue 10, Pages 1388-1402

Publisher

AMER METEOROLOGICAL SOC
DOI: 10.1175/JAM2387.1

Keywords

-

Ask authors/readers for more resources

This study, the first part of a two-part series, develops the method of successive orders of interaction (SOI) for a computationally efficient and accurate solution for radiative transfer in the microwave spectral region. The SOI method is an iterative approximation to the traditional adding and doubling method for radiative transfer. Results indicate that the approximations made in the SOI method are accurate for atmospheric layers with scattering properties typical of those in the infrared and microwave regions. In addition, an acceleration technique is demonstrated that extends the applicability of the SOI approach to atmospheres with greater amounts of scattering. A comparison of the SOI model with a full Monte Carlo model using the atmospheric profiles given by Smith et al. was used to determine the optimal parameters for the simulation of microwave top-of-atmosphere radiances. This analysis indicated that a four-stream model with a maximum initial-layer optical thickness of approximately 0.01 was optimal. In the second part of this series, the accuracies of the SOI model and its adjoint are demonstrated over a wide range of microwave remote sensing scenarios.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available