3.8 Review

Metalloprotease-induced ectodomain shedding of neural cell adhesion molecule (NCAM)

Journal

JOURNAL OF NEUROBIOLOGY
Volume 66, Issue 12, Pages 1378-1395

Publisher

WILEY
DOI: 10.1002/neu.20257

Keywords

NCAM; ectodomain shedding; neurite outgrowth; ADAM; branching

Categories

Funding

  1. NIMH NIH HHS [MH064065] Funding Source: Medline
  2. NINDS NIH HHS [NS26620] Funding Source: Medline

Ask authors/readers for more resources

Transmembrane forms of neural cell adhesion molecule (NCAM140, NCAM180(1)) are key regulators of neuronal development. The extracellular domain of NCAM can occur as a soluble protein in normal brain, and its levels are elevated in neuropsychiatric disorders, such as schizophrenia; however the mechanism of ectodomain release is obscure. Ectodomain shedding of NCAM140, releasing a fragment of 115 kD, was found to be induced in NCAM-transfected L-fibroblasts by the tyrosine phosphatase inhibitor pervanadate, but not phorbol esters. Pervanadate-induced shedding was mediated by a disintegrin metalloprotease (ADAM), regulated by ERK1/2 MAP kinase. In primary cortical neurons, NCAM was shed at high levels, and the metalloprotease inhibitor GM6001 significantly increased NCAM-dependent neurite branching and outgrowth. Moreover, NCAM-dependent neurite outgrowth and branching were inhibited in neurons isolated from a transgenic mouse model of NCAM shedding. These results suggest that regulated metalloprotease-induced ectodomain shedding of NCAM down-regulates neurite branching and neurite outgrowth. Thus, increased levels of soluble NCAM in schizophrenic brain have the potential to impair neuronal connectivity. (c) 2006 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available