4.6 Article

Speciation genes in plants

Journal

ANNALS OF BOTANY
Volume 106, Issue 3, Pages 439-455

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/aob/mcq126

Keywords

Speciation; reproductive isolation; mating system isolation; pollinator isolation; ecological isolation; unilateral incompatibility; hybrid necrosis; hybrid sterility; hybrid inviability; hybrid breakdown; cytoplasmic male sterility; restoration

Categories

Funding

  1. Natural Sciences and Engineering Research Council of Canada [DG 327475]
  2. US National Science Foundation [DBI-0905958]
  3. Direct For Biological Sciences
  4. Div Of Biological Infrastructure [0905958] Funding Source: National Science Foundation

Ask authors/readers for more resources

Background Analyses of speciation genes - genes that contribute to the cessation of gene flow between populations - can offer clues regarding the ecological settings, evolutionary forces and molecular mechanisms that drive the divergence of populations and species. This review discusses the identities and attributes of genes that contribute to reproductive isolation (RI) in plants, compares them with animal speciation genes and investigates what these genes can tell us about speciation. Scope Forty-one candidate speciation genes were identified in the plant literature. Of these, seven contributed to pre-pollination RI, one to post-pollination, prezygotic RI, eight to hybrid inviability, and 25 to hybrid sterility. Genes, gene families and genetic pathways that were frequently found to underlie the evolution of RI in different plant groups include the anthocyanin pathway and its regulators (pollinator isolation), S RNase-SI genes (unilateral incompatibility), disease resistance genes (hybrid necrosis), chimeric mitochondrial genes (cytoplasmic male sterility), and pentatricopeptide repeat family genes (cytoplasmic male sterility). Conclusions The most surprising conclusion from this review is that identities of genes underlying both prezygotic and postzygotic RI are often predictable in a broad sense front the phenotype of the reproductive barrier. Regulatory changes (both cis and trans) dominate the evolution of pre-pollination RI in plants, whereas a mix of regulatory mutations and changes in protein-coding genes underlie intrinsic postzygotic barriers. Also, loss-of-function mutations and copy number variation frequently contribute to RI. Although direct evidence of positive selection on speciation genes is surprisingly scarce in plants, analyses of gene family evolution, along with theoretical considerations, imply an important role for diversifying selection and genetic conflict in the evolution of RI. Unlike in animals, however, most candidate speciation genes in plants exhibit intraspecific polymorphism, consistent with an important role for stochastic forces and/or balancing selection in development of RI in plants.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available