4.7 Article

Impact of defined matrix interactions on insulin production by cultured human β-cells -: Effect on insulin content, secretion, and gene transcription

Journal

DIABETES
Volume 55, Issue 10, Pages 2723-2729

Publisher

AMER DIABETES ASSOC
DOI: 10.2337/db06-0120

Keywords

-

Ask authors/readers for more resources

The impact of extracellular matrix on insulin production needs to be understood both to optimize the derivation of functional beta-cells for transplantation and to understand mechanisms controlling islet neogenesis and glucose homeostasis. In this study, we present evidence that adhesion to some common matrix constituents has a profound impact on the transcription, secretion, and storage of insulin by human beta-cells. The integrin-dependent adhesion of fetal beta-cells to both collagen IV and vitronectin induces significant glucose-independent insulin secretion and a substantial reciprocal decline in insulin content. Collagen IV, but not vitronectin, induces comparable responses in adult beta-cells. Inhibition of extracellular signal-regulated kinase activation abrogates matrix-induced insulin secretion and effectively preserves the insulin content of adherent beta-cells. Using real-time PCR, we demonstrate that adhesion of both fetal and adult beta-cells to collagen IV and vitronectin also results in the marked suppression of insulin gene transcription. Based on these findings, we contend that integrin-dependent adhesion and signaling in response to certain matrices can have a significant negative impact on insulin production by primary human beta-cells. Such responses were not found to be associated with cell death but may precede beta-cell dedifferentiation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available