4.6 Article

Flooding effects on plants recovering from defoliation in Paspalum dilatatum and Lotus tenuis

Journal

ANNALS OF BOTANY
Volume 102, Issue 2, Pages 247-254

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/aob/mcn083

Keywords

allocation; defoliation; flooding; Lotus tenuis; Paspalum dilatatum; submergence

Categories

Ask authors/readers for more resources

Background and Aims Flooding and grazing are major disturbances that simultaneously affect plant performance in many humid grassland ecosystems. The effects of flooding on plant recovery from defoliation were studied in two species: the grass Paspalum dilatatum, regrowing primarily from current assimilation; and the legume, Lotus tenuis, which can use crown reserves during regrowth. Methods Plants of both species were subjected to intense defoliation in combination with 15 d of flooding at 6 cm water depth. Plant recovery was evaluated during a subsequent 30-d growth period under well-watered conditions. Plant responses in tissue porosity, height, tiller or shoot number and biomass of the different organs were assessed. Key Results Flooding increased porosity in both P. dilatatum and L. tenuis, as expected in flood-tolerant species. In P. dilatatum, defoliation of flooded plants induced a reduction in plant height, thus encouraging the prostrated-growth response typical of defoliated plants rather than the restoration of contact with atmospheric oxygen, and most tillers remained submerged until the end of the flooding period. In contrast, in L. tenuis, plant height was not reduced when defoliated and flooded, a high proportion of shoots being presented emerging above water (72%). In consequence, flooding plus defoliation did not depress plant recovery from defoliation in the legume species, which showed high sprouting and use of crown biomass during regrowth, whereas in the grass species it negatively affected plant recovery, achieving 32% lower biomass than plants subjected to flooding or defoliation as single treatments. Conclusions The interactive effect of flooding and defoliation determines a reduction in the regrowth of P. dilatatum that was not detected in L. tenuis. In the legume, the use of crown reserves seems to be a key factor in plant recovery from defoliation under flooding conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available