4.6 Article

Comparative ovule and megagametophyte development in hydatellaceae and water lilies reveal a mosaic of features among the earliest angiosperms

Journal

ANNALS OF BOTANY
Volume 101, Issue 7, Pages 941-956

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/aob/mcn032

Keywords

embryo sac; megagametophyte; ovule; Hydatellaceae; Trithuria

Categories

Funding

  1. Biotechnology and Biological Sciences Research Council Funding Source: Medline

Ask authors/readers for more resources

Background and Aims The embryo sac, nucellus and integuments of the early-divergent angiosperms Hydatellaceae and other Nymphaeales are compared with those of other seed plants, in order to evaluate the evolutionary origin of these characters in the angiosperms. Methods Using light microscopy, ovule and embryo sac development are described in five (of 12) species of Trithuria, the sole genus of Hydatellaceae, and compared with those of Cabombaceae and Nymphaeaceae. Key Results The ovule of Trithuria is bitegmic and tenuinucellate, rather than bitegmic and crassinucellate as in most other Nymphaeales. The seed is operculate and possesses a perisperm that develops precociously, which are both key features of Nymphaeales. However, in the Indian species T. konkanensis, perisperm is relatively poorly developed by the time of fertilization. Perisperm cells in Trithuria become multinucleate during development, a feature observed also in other Nymphaeales. The outer integument is semi-annular ('hood-shaped'), as in Cabombaceae and some Nymphaeaceae, in contrast to the annular ('cap-shaped') outer integument of some other Nymphaeaceae (e.g. Barclaya) and Amborella. The megagametophyte in Trithuria is monosporic and four-nucleate; at the two-nucleate stage both nuclei occur in the micropylar domain. Double megagametophytes were frequently observed, probably developed from different megaspores of the same tetrad. Indirect, but strong evidence is presented for apomictic embryo development in T. filamentosa. Conclusions Most features of the ovule and embryo sac of Trithuria are consistent with a close relationship with other Nymphaeales, especially Cabombaceae. The frequent occurrence of double megagametophytes in the same ovule indicates a high degree of developmental flexibility, and could provide a clue to the evolutionary origin of the Polygonum-type of angiosperm embryo sac.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available