4.7 Article

Cholesterol modulates the volume-regulated anion current in Ehrlich-Lettre ascites cells via effects on Rho and F-actin

Journal

AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY
Volume 291, Issue 4, Pages C757-C771

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpcell.00029.2006

Keywords

cell swelling; kinase; phospholipid phosphatidylinositol-(4,5)bisphosphate; cytoskeleton

Ask authors/readers for more resources

The mechanisms controlling the volume-regulated anion current (VRAC) are incompletely elucidated. Here, we investigate the modulation of VRAC by cellular cholesterol and the potential involvement of F-actin, Rho, Rho kinase, and phosphatidylinositol-(4,5)-bisphosphate [PtdIns(4,5)P-2] in this process. In Ehrlich-Lettre ascites (ELA) cells, a current with biophysical and pharmacological properties characteristic of VRAC was activated by hypotonic swelling. A 44% increase in cellular cholesterol content had no detectable effects on F-actin organization or VRAC activity. A 47% reduction in cellular cholesterol content increased cortical and stress fiber-associated F-actin content in swollen cells. Cholesterol depletion increased VRAC activation rate and maximal current after a modest (15%), but not after a severe (36%) reduction in extracellular osmolarity. The cholesterol depletion-induced increase in maximal VRAC current was prevented by F-actin disruption using latrunculin B (LB), while the current activation rate was unaffected by LB, but dependent on Rho kinase. Rho activity was decreased by similar to 20% in modestly, and similar to 50% in severely swollen cells. In modestly swollen cells, this reduction was prevented by cholesterol depletion, which also increased isotonic Rho activity. Thrombin, which stimulates Rho and causes actin polymerization, potentiated VRAC in modestly swollen cells. VRAC activity was unaffected by inclusion of a water-soluble PtdIns(4,5)P-2 analogue or a PtdIns(4,5)P-2-blocking antibody in the pipette, or neomycin treatment to sequester PtdIns(4,5)P-2. It is suggested that in ELA cells, F-actin and Rho-Rho kinase modulate VRAC magnitude and activation rate, respectively, and that cholesterol depletion potentiates VRAC at least in part by preventing the hypotonicity-induced decrease in Rho activity and eliciting actin polymerization.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available