4.6 Article

TearSim:: A two-phase model addressing hot tearing formation during aluminum direct chill casting

Publisher

SPRINGER
DOI: 10.1007/s11661-006-0188-6

Keywords

-

Ask authors/readers for more resources

A two-phase mathematical model for the study of hot tearing formation is presented. The model accounts for the main phenomena associated with the formation of hot tears, i.e., the lack of feeding at the late stages of solidification and the localization of viscoplastic deformation. The model incorporates an advanced viscoplastic constitutive model for the coherent part of the mushy zone, allowing for the possibility of dilatation/densification of the semisolid skeleton under applied deformation. Based on quantities computed by the model, a hot tearing criterion is proposed where liquid feeding difficulties and viscoplastic deformation at the late stages of solidification are taken into account. The model is applied to study hot tearing formation during the start-up phase for direct-chill (DC) casting of extrusion ingots, and to discuss the effect of different phenomena and process parameters. The modeling results are also compared to experimentally measured hot tearing susceptibilities, and the model is able to reproduce known experimental trends such as the effect of the casting speed and the importance of the design of the starting block.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available