4.2 Article Proceedings Paper

Continuum and molecular-level modeling of fatigue crack retardation in self-healing polymers

Publisher

ASME
DOI: 10.1115/1.2345452

Keywords

fatigue crack retardation; artificial crack closure; wedge; contact; healing chemistry; cohesive finite element; coarse-grain molecular dynamics; polymeric materials; self-healing polymers

Ask authors/readers for more resources

A numerical model to study the fatigue crack retardation in a self-healing material (White et al., 2001, Nature, 409, pp. 794-797) is presented. The approach relies on a combination of cohesive modeling for fatigue crack propagation and a contact algorithm to enforce crack closure due to an artificial wedge in the wake of the crack. The healing kinetics of the self-healing material is captured by introducing along the fracture plane a state variable representing the evolving degree of cure of the healing agent. The atomic-scale processes during the cure of the healing agent are modeled using a coarse-grain molecular dynamics model specifically developed for this purpose. This approach yields the cure kinetics and the mechanical properties as a function of the degree of cure, information that is transmitted to the continuum-scale models. The incorporation of healing kinetics in the model enables us to study the competition between fatigue crack growth and crack retardation mechanisms in this new class of materials. A systematic study of the effect of different loading and healing parameters shows a good qualitative agreement between experimental observations and simulation results.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available