4.5 Article

Mitral Valve Annuloplasty A Quantitative Clinical and Mechanical Comparison of Different Annuloplasty Devices

Journal

ANNALS OF BIOMEDICAL ENGINEERING
Volume 40, Issue 3, Pages 750-761

Publisher

SPRINGER
DOI: 10.1007/s10439-011-0442-y

Keywords

Mitral annulus; Mitral regurgitation; Annuloplasty; Strain; Curvature; Dynamics

Funding

  1. Deutsche Herzstiftung, Frankfurt, Germany [S/06/07]
  2. U.S.-Norway Fulbright Foundation
  3. Swedish Heart-Lung Foundation
  4. Swedish Society for Medical Research
  5. Western States Affiliate American Heart Association
  6. National Institutes of Health [R01 HL29589, R01 HL67025]
  7. US National Science Foundation [CMMI-0952021]
  8. Directorate For Engineering
  9. Div Of Civil, Mechanical, & Manufact Inn [0952021] Funding Source: National Science Foundation

Ask authors/readers for more resources

Mitral valve annuloplasty is a common surgical technique used in the repair of a leaking valve by implanting an annuloplasty device. To enhance repair durability, these devices are designed to increase leaflet coaptation, while preserving the native annular shape and motion; however, the precise impact of device implantation on annular deformation, strain, and curvature is unknown. In this article, we quantify how three frequently used devices significantly impair native annular dynamics. In controlled in vivo experiments, we surgically implanted 11 flexible-incomplete, 11 semi-rigid-complete, and 12 rigid-complete devices around the mitral annuli of 34 sheep, each tagged with 16 equally spaced tantalum markers. We recorded four-dimensional marker coordinates using biplane videofluoroscopy, first with device and then without, which were used to create mathematical models using piecewise cubic splines. Clinical metrics (characteristic anatomical distances) revealed significant global reduction in annular dynamics upon device implantation. Mechanical metrics (strain and curvature fields) explained this reduction via a local loss of anterior dilation and posterior contraction. Overall, all three devices unfavorably caused reduction in annular dynamics. The flexible-incomplete device, however, preserved native annular dynamics to a larger extent than the complete devices. Heterogeneous strain and curvature profiles suggest the need for heterogeneous support, which may spawn more rational design of annuloplasty devices using design concepts of functionally graded materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available