4.6 Article

A-type granites of crustal origin ultimately result from open-system fenitization-type reactions in an extensional environment

Journal

LITHOS
Volume 91, Issue 1-4, Pages 125-136

Publisher

ELSEVIER
DOI: 10.1016/j.lithos.2006.03.012

Keywords

A-type granite; rift zone; fenitization; mass transfer; lower crust

Ask authors/readers for more resources

The origin of A-type granites and rhyolites are ultimately relatable to mantle-derived melts and fluids in a zone undergoing extension. The basaltic magmas are accompanied by an alkaline fluid phase, dominantly H2O+CO2, which will induce alkali metasomatism of the granulitic crust above. The distinctive mineralogy and geochemistry are thus a direct result of the tectonic environment of formation. Metaluminous and peralkaline granites are magmatic compositions that typically contain evidence of crust and mantle in their genetic baggage, but peraluminous A-type granites may well be caused by efficient loss of alkalis during epizonal degassing. A-type granites and rhyolites are members of a vast family of rift-related magmas that include those of syenitic, nepheline syenitic and carbonatitic character. The fluid phase at work is alkaline. It can carry a host of trace elements in solution, in particular the high-field-strength elements and the rare earths. It can fenitize and fertilize a refractory lower crust, and prepare the precursor for near-complete melting. Some examples of A-type granitic magma do arise by efficient fractional crystallization of a mantle-derived basaltic magma, with or without accompanying assimilation, but many arise by partial or complete melting of an alkali-metasomatized crust. (C) 2006 Elsevier B.V All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available