4.7 Article

Evaluation of Lolium temulentum as a model grass species for the study of salinity stress by PCR-based subtractive suppression hybridization analysis

Journal

PLANT SCIENCE
Volume 171, Issue 4, Pages 459-469

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/j.plantsci.2006.05.003

Keywords

salt stress; subtractive suppression hybridization; Lolium temulentum

Ask authors/readers for more resources

Soil salinity is one of the major abiotic stresses responsible for reduced persistence, yield and biomass accumulation in many crops including forage grass. Forage grass species are generally polymorphic, obligate out-crossers, that are self-incompatible. Because of their high genetic diversity, the mechanisms of salt tolerance are poorly understood. Consequently, the development of a useful model grass plant for the study of abiotic stresses is of great importance. We propose the use of Lolium temulentum L. (Darnel ryegrass), a diploid self-fertile species with a short life cycle (2-3 months), as a model system for the study of forage/turf grass species. To evaluate the utility of L. temulentum as a model grass species to study salt stress, a PCR-based subtractive suppression hybridization library was generated and sequenced. A total of 528 unique sequences were identified, among which 167 corresponded to orthologs of previously identified plant stress response genes. The expression patterns in leaf, crown and root tissues of selected genes were analyzed by Northern blot analysis, demonstrating salinity depended regulation of gene expression. These preliminary studies provide proof of concept supporting the use of L. temulentum as a model forage grass for molecular genetic analyses of salinity stress. Published by Elsevier Ireland Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available