4.5 Article

Modelling the transmission of airborne infections in enclosed spaces

Journal

EPIDEMIOLOGY AND INFECTION
Volume 134, Issue 5, Pages 1082-1091

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S0950268806005875

Keywords

-

Ask authors/readers for more resources

The Wells-Riley equation for modelling airborne infection in indoor environments is incorporated into an SEIR epidemic model with a short incubation period to simulate the transmission dynamics of airborne infectious diseases in ventilated rooms. The model enables the effect of environmental factors such as the ventilation rate and the room occupancy to be examined, and allows the long-term impact of infection control measures to be assessed. A theoretical parametric study is carried out to demonstrate how changes to both the physical environment and infection control procedures may potentially limit the spread of short-incubation-period airborne infections in indoor environments such as hospitals.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available