4.5 Article

Remodeling of engineered tissue anisotropy in response to altered loading conditions

Journal

ANNALS OF BIOMEDICAL ENGINEERING
Volume 36, Issue 8, Pages 1322-1334

Publisher

SPRINGER
DOI: 10.1007/s10439-008-9509-9

Keywords

biaxial; biomechanics; collagen; contact guidance; fibroblast

Funding

  1. NHLBI NIH HHS [R01 HL075639-04, R01 HL-075639, R01 HL075639] Funding Source: Medline
  2. CSR NIH HHS [RG 01-0160] Funding Source: Medline

Ask authors/readers for more resources

Structural and mechanical anisotropy are critical to the function of many engineered tissues. This study examined the ability of anisotropic tissue constructs to overcome contact guidance cues and remodel in response to altered mechanical loading conditions. Square tissues engineered from dermal fibroblasts and type-I collagen were uniaxially loaded to induce cell and matrix alignment. After an initial time, t*, of 5-72 h, loading was switched from the x-axis to the y-axis. Cell alignment was examined throughout the experiment until a steady state was reached. Before t*, cells spontaneously aligned in the x-direction. After t*, the strength of alignment transiently decreased then increased, and mean cell orientation transitioned from the x- to the y-direction following an exponential time course with a time constant that increased with t*. Collagen fiber orientation exhibited similar trends that could not be explained by passive kinematics alone. Structural realignment resulted in concomitant changes in biaxial tissue mechanical properties. The findings suggest that even highly aligned engineered tissue constructs retain the capacity to remodel in response to altered mechanical stimuli. This may have important functional consequences when an anisotropic engineered tissue designed in vitro is surgically implanted into a mechanically complex graft site.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available