4.5 Article

Nonfunctional SCN1A is common in severe myoclonic epilepsy of infancy

Journal

EPILEPSIA
Volume 47, Issue 10, Pages 1636-1642

Publisher

BLACKWELL PUBLISHING
DOI: 10.1111/j.1528-1167.2006.00643.x

Keywords

sodium channel; SMEI; SCN1A; basic electrophysiology; inherited epilepsy

Funding

  1. NIMH NIH HHS [T32-MH065215, T32 MH065215] Funding Source: Medline
  2. NINDS NIH HHS [NS32387] Funding Source: Medline

Ask authors/readers for more resources

Purpose: Mutations in SCN1A, encoding the human Na(V)1.1 neuronal voltage-gated sodium channel, cause the syndrome of severe myoclonic epilepsy of infancy (SMEI). Most SMEI-associated mutations are predicted to truncate the SCN1A protein, likely causing a loss of sodium channel function. However, many missense or in-frame deletion SCN1A mutations have also been reported in this disorder, but their functional impact is largely unknown. Here we report the functional characterization of eight SCN1A mutations (G177E, I227S, R393H, Y426N, H939Q, C959R, delF1289, and T1909I) previously identified in SMEI probands. Methods: SCN1A mutants were constructed in a recombinant human SCN1A and then heterologously expressed in human tsA201 cells along with the human beta(1) and beta(2) sodium channel accessory subunits. Whole-cell patch-clamp recording was used to define biophysical properties of each mutant and for comparison with the wild-type (WT) channel. Results: Six of the mutants were nonfunctional, but Y426N and T1909I generated measurable sodium channel activity. Cells expressing Y426N and T1909I had significantly lower current densities compared with WT-SCN1A. In addition, other biophysical abnormalities were observed for the two functional mutants including decreased channel availability (Y426N) and increased persistent sodium current (T1909I). Conclusions: We conclude that SMEI is caused either by complete loss of SCN1A function, or by dysfunctional sodium channels exhibiting mixed biophysical properties. This wide spectrum of functional defects observed among SCN1A mutations suggests that SMEI may result from more than a single molecular or cellular mechanism, or require other factors for pathogenesis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available