4.5 Article

Comparison and analysis of inter-subject variability of simulated magnetic activity generated from gastric electrical activity

Journal

ANNALS OF BIOMEDICAL ENGINEERING
Volume 36, Issue 6, Pages 1049-1059

Publisher

SPRINGER
DOI: 10.1007/s10439-008-9480-5

Keywords

electrogastrogram; magnetogastrogram; magnetic field; SQUID

Funding

  1. NIDDK NIH HHS [R01 DK064775, R01 DK64775] Funding Source: Medline

Ask authors/readers for more resources

Electrogastrograms (EGGs) produced from gastric electrical activity (GEA) are used as a non-invasive method to aid in the assessment of a subject's gastric condition. It has been documented that recordings of the magnetic activity generated from GEA are more reliable. Typically, with magnetic measurements of GEA, only activity perpendicular to the body is recorded. Also, external anatomical landmarks are used to position the magnetic recording devices, SQUIDs, (Superconducting Quantum Interference Devices) over the stomach with no allowance made for body habitus. In the work presented here, GEA and its corresponding magnetic activity are simulated. Using these data, we investigate the effects of using a standard SQUID location as well as a customized SQUID position and the contribution the magnetic component perpendicular to the body makes to the magnetic field. We also explore the effects of the stomach wall thickness on the resultant magnetic fields. The simulated results show that the thicker the wall, the larger the magnitude of the magnetic field holding the same signal patterns. We conclude that most of the magnetic activity arising from GEA occurs in a plane parallel to the anterior body. We also conclude that using a standard SQUID position can be suboptimal.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available