4.2 Article

Exposure of murine cells to pulsed electromagnetic fields rapidly activates the mTOR signaling pathway

Journal

BIOELECTROMAGNETICS
Volume 27, Issue 7, Pages 535-544

Publisher

WILEY
DOI: 10.1002/bem.20244

Keywords

PEMF; pre-osteoblasts; MC3T3-E1 cell line; p70 S6 kinase; ribosomal protein S6; TGF-beta; prostaglandin E-2

Ask authors/readers for more resources

Murine pre-osteoblasts and fibroblast cell lines were used to determine the effect of pulsed electromagnetic field (PEMF) exposure on the production of autocrine growth factors and the activation of early signal transduction pathways. Exposure of pre-osteoblast cells to PEMF minimally increased the amount of secreted TGF-beta after 1 day, but had no significant effects thereafter. PEMF exposure of pre-osteoblast cells also had no effect on the amount of prostaglandin E-2 in the conditioned medium. Exposure of both pre-osteoblasts and fibroblasts to PEMF rapidly activated the mTOR signaling pathway, as evidenced by increased phosphorylation of mTOR, p70 S6 kinase, and the ribosomal protein S6. Inhibition of PI3-kinase activity with the chemical inhibitor LY294002 blocked PEMF-dependent activation of mTOR in both the pre-osteoblast and fibroblast cell lines. These findings suggest that PEMF exposure might function in a manner analogous to soluble growth factors by activating a unique set of signaling pathways, inclusive of the PI-3 kinase/mTOR pathway.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available