4.5 Article

Mesenchymal cells from adult kidney support angiogenesis and differentiate into multiple interstitial cell types including erythropoietin-producing fibroblasts

Journal

AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY
Volume 291, Issue 4, Pages F902-F912

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajprenal.00396.2005

Keywords

fibroblast

Ask authors/readers for more resources

Mesenchymal cells have been isolated from embryos and multiple adult organs where they may differentiate into various connective tissue cell types and provide paracrine support for surrounding cells. With the use of a technique for culturing multipotent mesenchymal cells from adult tissues, a fibroblast-like cell clone (4E) was isolated from adult mouse kidney. 4E cells were able to differentiate along multiple mesodermal lineages including cell types located in the renal interstitium such as fibroblasts and pericytes. Coculture of 4E cells with ureteric bud and epithelial cell lines and analysis of resulting changes in gene expression revealed that these cells support angiogenesis and tubulogenesis and expressed genes characteristic of embryonic renal stromal cells. Following subcapsular injection after unilateral ischemia-reperfusion in adult mice, 4E cells migrated to a peritubular interstitial location and expressed interstitial cell markers, whereas cells injected in control kidneys remained stationary. Incubation in hypoxic or anoxic conditions resulted in erythropoietin expression in a small subset of ecto-5'-nucleotidase-positive cells and resulted in increased vascular endothelial growth factor expression in the same cell population. Our findings suggest that the adult kidney may contain interstitial mesenchymal cell progenitors with embryonic stromal cell characteristics that are able to provide paracrine support for surrounding vessels and tubular epithelial cells and differentiate into erythropoietin producing fibroblasts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available