4.2 Review

Protein prenylation: An (almost) comprehensive overview on discovery history, enzymology, and significance in physiology and disease

Journal

MONATSHEFTE FUR CHEMIE
Volume 137, Issue 10, Pages 1241-1281

Publisher

SPRINGER WIEN
DOI: 10.1007/s00706-006-0534-9

Keywords

farnesyl; geranylgeranyl; prenyl; farnesyltransferase inhibitor; cancer; parasitic disease

Ask authors/readers for more resources

Since 1979, when prenylation has been first discovered as chemical oddity of a yeast mating factor, the two forms of this posttranslational modification of proteins (farnesylation and geranylgeranylation) have been found as wide spread among proteins from Eukarya and their viruses. This review attempts to summarize as comprehensively as possible the enzymological processes of prenylation and the various aspects of their biological significance. The substrate proteins of prenyltransferases are known to carry a sequence signal composed of a cysteine-containing 4-5 residue stretch at the utmost C-terminal end that is N-terminally preceded by a flexible and polar linker region of ca. 10 residues. Postprenylation processing of substrate proteins can involve C-terminal proteolysis, C-terminal carboxyl methylation, and other steps of maturation. The prenyl anchor functions as module for membrane attachment or for protein-protein interaction. Prenyl anchor carrying proteins fulfill a large array of functions in signaling and regulation of cellular processes. Therefore, they are involved in the pathogenesis of a variety of human diseases, the most prominent one being cancer. Farnesyltransferase inhibitors show surprisingly high efficiency in controlling tumor growth in model systems but, so far, clinical trials with human patients have remained without the desired success. Interference into prenylation pathways appears also a promising treatment principle in a variety of parasitic diseases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available