4.3 Article Proceedings Paper

Cassini observations of Saturn's inner plasmasphere: Saturn orbit insertion results

Journal

PLANETARY AND SPACE SCIENCE
Volume 54, Issue 12, Pages 1197-1210

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.pss.2006.05.038

Keywords

planetary; Saturn; magnetosphere; plasma

Funding

  1. UK Space Agency [PP/D00084X/1] Funding Source: researchfish

Ask authors/readers for more resources

We present new and definitive results of Cassini plasma spectrometer (CAPS) data acquired during passage through Saturn's inner plasmasphere by the Cassini spacecraft during the approach phase of the Saturn orbit insertion period. This analysis extends the original analysis of Sittler et al. [2005. Preliminary results on Saturn's inner plasmasphere as observed by Cassini: comparison with Voyager. Geophys. Res. Lett. 32, L14S07, doi:10.1029/2005GLO22653] to L similar to 10 along with also providing a more comprehensive study of the interrelationship of the various fluid parameters. Coincidence data are sub-divided into protons and water group ions. Our revised analysis uses an improved convergence algorithm which provides a more definitive and independent estimate of the spacecraft potential Phi(SC) for which we enforce the protons and water group ions to co-move with each other. This has allowed us to include spacecraft charging corrections to our fluid parameter estimations and allow accurate estimations of fluctuations in the fluid parameters for future correlative studies. In the appendix we describe the ion moments algorithm, and minor corrections introduced by not weighting the moments with sin theta term in Sittler et al. [2005] (Correction offset by revisions to instruments geometric factor). Estimates of the spacecraft potential and revised proton densities are presented. Our total ion densities are in close agreement with the electron densities reported by Moncuquet et al. [2005. Quasi-thermal noise spectroscopy in the inner magnetosphere of Saturn with Cassini/RPWS: electron temperatures and density. Geophys. Res. Lett. 32, L20S02, doi:10.1029/2005GL022508] who used upper hybrid resonance (UHR) emission lines observed by the radio and plasma wave science (RPWS) instrument. We show a positive correlation between proton temperature and water group ion temperature. The proton and thermal electron temperatures track each with both having a positive radial gradient. These results are consistent with pickup ion energization via Saturn's rotational electric field. We see evidence for an anti-correlation between radial flow velocity V-R and azimuthal velocity V-phi, which is consistent with the magnetosphere tending to conserve angular momentum. Evidence for MHD waves is also present. We show clear evidence for outward transport of the plasma via flux tube interchange motions with the radial velocity of the flow showing positive radial gradient with VR similar to 0.12(L/4)(5-5) km/s functional dependence for 4 < L < 10 (i.e., if we assume to be diffusive transport then D-LL similar to D0(L)(11) for fixed stochastic time step delta t). Previous models with centrifugal transport have used D-LL similar to D0L3 dependence. The radial transport seems to begin at Enceladus' L shell, L similar to 4, where we also see a minimum in the W+ ion temperature Tw similar to 35 eV. For the first time, we are measuring the actual flux tube interchange motions in the magnetosphere and how it varies with radial distance. These observations can be used as a constraint with regard to future transport models for Saturn's magnetosphere. Finally, we evaluate the thermodynamic properties of the plasma, which are all consistent with the pickup process being the dominant energy source for the plasma. (c) 2006 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available