4.3 Review

New insights towards understanding the mechanisms of sperm protection by egg yolk and milk

Journal

MOLECULAR REPRODUCTION AND DEVELOPMENT
Volume 73, Issue 10, Pages 1338-1344

Publisher

WILEY
DOI: 10.1002/mrd.20565

Keywords

sperm preservation; seminal plasma proteins; extenders; diluters; egg yolk; low-density lipoproteins; milk

Ask authors/readers for more resources

Mammalian sperm preservation in extenders containing egg yolk (EY) and/or milk has been used for over half a century. However, the mechanism by which EY or milk protects sperm during storage remains elusive. Studies conducted over the past two decades in our laboratory have revealed that a family of lipid-binding proteins (BSP proteins) present in bull seminal plasma is detrimental to sperm preservation since these proteins induce cholesterol and phospholipid removal from the sperm membrane. Interestingly, these detrimental factors of seminal plasma interact with the low-density lipoproteins (LDL) present in EY. This interaction minimizes lipid removal from the sperm membrane, which positively influences sperm storage in liquid or frozen states. Based on several lines of evidence, we suggest that the sequestration of BSP proteins by LDL (BSP proteins: lipoprotein interaction) is the major mechanism of sperm protection by EY. Skimmed milk, which is devoid of lipoproteins, also protects sperm during storage. Several studies indicate that the active components involved in sperm protection by milk are casein micelles. Thus, it appears that the mechanism by which milk protects sperm involves a BSP protein: casein micelle interaction. In view of these new insights, novel strategies have been suggested to improve the efficiency of semen preservation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available