3.8 Article

Fully self-consistent GW calculations for atoms and molecules

Journal

EUROPHYSICS LETTERS
Volume 76, Issue 2, Pages 298-304

Publisher

EDP SCIENCES S A
DOI: 10.1209/epl/i2006-10266-6

Keywords

-

Ask authors/readers for more resources

We solve the Dyson equation for atoms and diatomic molecules within the GW approximation, in order to elucidate the effects of self-consistency on the total energies and ionization potentials. We find GW to produce accurate energy differences although the self-consistent total energies differ significantly from the exact values. Total energies obtained from the Luttinger-Ward functional E-LW[G] with simple, approximate Green functions as input, are shown to be in excellent agreement with the self-consistent results. This demonstrates that the Luttinger-Ward functional is a reliable method for testing the merits of different self-energy approximations without the need to solve the Dyson equation self-consistently. Self-consistent GW ionization potentials are calculated from the Extended Koopmans Theorem, and shown to be in good agreement with the experimental results. We also find the self-consistent ionization potentials to be often better than the non-self-consistent G(0)W(0) values. We conclude that GW calculations should be done self-consistently in order to obtain physically meaningful and unambiguous energy differences.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available