4.7 Article Proceedings Paper

A missense mutation (c. 184C > T) in ovine CLN6 causes neuronal ceroid lipofuscinosis in Merino sheep whereas affected South Hampshire sheep have reduced levels of CLN6 mRNA

Journal

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.bbadis.2006.09.004

Keywords

NCLs; Batten disease; CLN6; sheep model; lysosomal storage disease; neurodegeneration

Funding

  1. NINDS NIH HHS [NS40297] Funding Source: Medline

Ask authors/readers for more resources

The neuronal ceroid lipofuscinoses (NCLs, Batten disease) are a group of fatal recessively inherited neurodegenerative diseases of humans and animals characterised by common clinical signs and pathology. These include blindness, ataxia, dementia, behavioural changes, seizures, brain and retinal atrophy and accumulation of fluorescent lysosome derived organelles in most cells. A number of different variants have been suggested and seven different causative genes identified in humans (CLN1, CLN2, CLN3, CLN5, CLN6, CLN8 and CTSD). Animal models have played a central role in the investigation of this group of diseases and are extremely valuable for developing a better understanding of the disease mechanisms and possible therapeutic approaches. Ovine models include flocks of affected New Zealand South Hampshires and Borderdales and Australian Merinos. The ovine CLN6 gene has been sequenced in a representative selection of these sheep. These investigations unveiled the mutation responsible for the disease in Merino sheep (c.184C > T; p.Arg62Cys) and three common ovine allelic variants (c.56A > G, c.822G > A and c.933-934insCT). Linkage analysis established that CLN6 is the gene most likely to cause NCL in affected South Hampshire sheep, which do not have the c.184C > T mutation but show reduced expression of CLN6 mRNA in a range of tissues as determined by real-time PCR. Lack of linkage precludes CLN6 as a candidate for NCL in Borderdale sheep. (c) 2006 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available