4.3 Article

Human progenitor cells from bone marrow or adipose tissue produce VEGF, HGF, and IGF-I in response to TNF by a p38 MAPK-dependent mechanism

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpregu.00280.2006

Keywords

tumor necrosis factor; growth factors; human mesenchymal stem cells

Categories

Funding

  1. NIGMS NIH HHS [R01 GM-070628] Funding Source: Medline

Ask authors/readers for more resources

Accumulating evidence suggests that progenitor cells may decrease destructive inflammation and reduce tissue loss by antiapoptotic mechanisms. However, they remain poorly characterized, and many questions remain regarding the mechanisms by which they may positively affect wound healing, tissue remodeling, or tissue regeneration. It has been speculated that various growth factors are responsible, but what components of the wound milieu stimulate progenitor cell production of growth factors and by what mechanisms? We hypothesized that tumor necrosis factor-alpha (TNF-alpha) stimulated progenitor cell secretion of vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), and insulin-like growth factor I (IGF-I) by a p38 mitogen-activated protein kinase (MAPK)-dependent mechanism. Human mesenchymal stem cells (hMSCs) and human adipose progenitor cells (hAPCs) were divided into four groups: control, p38 MAPK inhibitor (p38MKI), TNF, and TNF + p38MKI. After 24 h of incubation, supernatants were harvested for ELISA of VEGF, HGF, and IGF-I. Cells were collected for Western blot analysis of p38 MAPK activation. Secretion of VEGF, HGF, and IGF-I in hMSCs and hAPCs was significantly increased by stimulation with TNF and was associated with increased activation of p38 MAPK. The p38 MAPK inhibitor decreased production of TNFstimulated VEGF, HGF, and IGF-I in hMSCs and hAPCs. However, p38 MAPK inhibitor alone had no effect on production of growth factors. These data demonstrate that progenitor cells are potent sources of VEGF, HGF, and IGF-I. TNF, a prominent tissue cytokine, strongly stimulated production of growth factors by hMSCs and hAPCs via a p38 MAPK-dependent mechanism.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available