4.4 Article Proceedings Paper

EDLC characteristics with high specific capacitance of the CNT electrodes grown on nanoporous alumina templates

Journal

CURRENT APPLIED PHYSICS
Volume 6, Issue 6, Pages 1012-1015

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.cap.2005.07.008

Keywords

CNT; EDLC; specific capacitance; alumina template

Ask authors/readers for more resources

Well-ordered nanoporous alumina templates were fabricated by two-step anodization method by applying a constant voltage of 40 V in oxalic acid solution or of 25 V in sulfuric acid solution. The cylindrical pore diameter and pore density of the templates utilized for the carbon nanotube (CNT) growth were 86 +/- 5 nm and 1.2 x 10(10) cm(-2) in oxalic acid solution and 53 +/- 1 nm and 3.1 x 10(10) cm(-2) in sulfuric acid solution, respectively. The CNTs with uniform diameter of 50 +/- 10 nm (oxalic acid) and 44 +/- 2 nm (sulfuric acid) were grown on the porous alumina template as electrode materials for the electrochemical double layer capacitor (EDLC). The EDLC characteristics were examined by measuring the capacitances from cyclic voltammograms and the charge-discharge curves. The specific capacitances of the CNT electrodes are 30 +/- F/g (Phi = 50 +/- 10 nm) and 121 +/- 5 F/g (Phi = 44 +/- 2 nm). The high specific capacitance of the CNT electrode was achieved by using nanoporous alumina templates with the high pore density and the small and uniform pore diameter. (c) 2005 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available