4.7 Article

Floor shape optimization for green building design

Journal

ADVANCED ENGINEERING INFORMATICS
Volume 20, Issue 4, Pages 363-378

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.aei.2006.07.001

Keywords

building design; genetic algorithms; optimization; shape representation; sustainable development

Ask authors/readers for more resources

Shape is an important consideration in green building design due to its significant impact on energy performance and construction costs. This paper presents a methodology to optimize building shapes in plan using the genetic algorithm. The building footprint is represented by a multi-sided polygon. Different geometrical representations for a polygon are considered and evaluated in terms of their potential problems such as epistasis, which occurs when one gene pair masks or modifies the expression of other gene pairs, and encoding isomorphism. which occurs when chromosomes with different binary strings map to the same solution in the design space. Two alternative representations are compared in terms of their impact on computational effectiveness and efficiency. An optimization model is established considering the shape-related variables and several other envelope-related design variables such as window ratios and overhangs. Life-cycle cost and life-cycle environmental impact are the two objective functions used to evaluate the performance of a green building design. A case study is presented where the shape of a typical floor of an office building defined by a pentagon is optimized with a multiobjective genetic algorithm. (c) 2006 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available