4.5 Article

Murine pituitary turnor-transforming gene functions as a securin protein in insulin-secreting cells

Journal

JOURNAL OF ENDOCRINOLOGY
Volume 191, Issue 1, Pages 45-53

Publisher

SOC ENDOCRINOLOGY
DOI: 10.1677/joe.1.06885

Keywords

-

Funding

  1. NIDDK NIH HHS [DK071870, DK064169] Funding Source: Medline

Ask authors/readers for more resources

Human pituitary tumor-transforming gene 1 (PTTG1) encodes a securin protein critically important in regulating chromosome separation. Murine PTTG (mPTTG) is 66% homologous to human PTTG1 and PTTG-null (PTTG-/-) mice exhibit pancreatic beta-cell hpoplasia and abnormal nuclear morphology with resultant diabetes. As we show that ductal beta-cell neogenesis is intact in PTTG-/- mice, we explored mechanism for defective beta-cell replication. We tested whether mPTTG exhibits securin properties in mouse insulin-secreting insulinoma MIN6 cells, using a live-cell system to monitor mitosis in cells transfected with an enhanced green fluorescent protein (EGFP)-tagged mPTTG conjugate (mPTTG-EGFP). To fulfill the criteria for securin properties, the protein should undergo degradation immediately before the metaphase-to-anaphase transition when expression levels are low, and should inhibit metaphase-to-anaphase transition when expression levels are high. EGFP itself did not undergo degradation throughout mitosis and high levels of EGFP per se did not affect normal mitosis progression (n = 25). However, mPTTG-EGFP was degraded 2 min before the metaphase-to-anaphase transition when expression levels were low (it = 19), and high mPTTG-EGFP levels blocked metaphase-to-anaphase transition in 13 cells. mPTTG-EGFP inhibited MIN6 cell proliferation and caused apoptosis. Immunocoprecipitation demonstrated binding of mPTTG-EGFP and separase. These results show that mPTTG exhibits properties consistent with a murine securin in insulin-secreting mouse cells and mPTTG overexpression inhibits cell proliferation, suggesting that defective beta-cell proliferation observed in PTTG-/- mice is likely due to abnormal cell-cycle progression.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available