4.7 Article

A nuclear-encoded ClpP subunit of the chloroplast ATP-dependent Clp protease is essential for early development in Arabidopsis thaliana

Journal

PLANTA
Volume 224, Issue 5, Pages 1103-1115

Publisher

SPRINGER
DOI: 10.1007/s00425-006-0292-2

Keywords

Arabidopsis; chloroplast; Clp proteins; protease; leaf development

Categories

Ask authors/readers for more resources

ClpP4 is a nuclear-encoded plastid protein that functions as a proteolytic subunit of the ATP-dependent Clp protease of higher plants. Given the lack of viable clpP4 knockout mutants, antisense clpP4 repression lines were prepared to study the functional importance of ClpP4 in Arabidopsis thaliana. Screening of transformants revealed viable lines with up to 90% loss of wild type levels of ClpP4 protein, while those with > 90% were severely bleached and strongly retarded in vegetative growth, failing to reach reproductive maturity. Of the viable antisense plants, repression of clpP4 expression produced a pleiotropic phenotype, of which slow growth and leaf variegation were most prominent. Chlorosis was most severe in younger leaves, with the affected regions localized around the mid-vein and exhibiting impaired chloroplast development and mesophyll cell differentiation. Chlorosis lessened during leaf expansion until all had regained the wild type appearance upon maturity. This change in phenotype correlated with the developmental expression of ClpP4 in the wild type, in which ClpP4 was less abundant in mature leaves due to post-transcriptional/translational regulation. Repression of ClpP4 caused a concomitant down-regulation of other nuclear-encoded ClpP paralogs in the antisense lines, but no change in other chloroplast-localized Clp proteins. Greening of the young chlorotic antisense plants upon maturation was accelerated by increased light, either by longer photoperiod or by higher growth irradiance; conditions that both raised levels of ClpP4 in wild type leaves. In contrast, shift to low growth irradiance decreased the relative amount of ClpP4 in wild type leaves, and caused newly developed leaves of fully greened antisense lines to regain the chlorotic phenotype.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available