4.8 Article

Antitumor activity of an oncolytic adenovirus-delivered oncogene small interfering RNA

Journal

CANCER RESEARCH
Volume 66, Issue 19, Pages 9736-9743

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/0008-5472.CAN-06-1617

Keywords

-

Categories

Funding

  1. NCI NIH HHS [CA108039] Funding Source: Medline

Ask authors/readers for more resources

Despite successes in animal models, cancer gene therapy with small interfering RNAs (siRNA) is hindered by the lack of an optimal delivery platform. We examined the applicability of the replication-competent, oncolytic adenovirus, ONYX-411, to deliver a mutant K-ras siRNA transgene to human cancer cells. Proof-of-principle studies showed an additive tumor growth-inhibitory response through siRNA-mediated K-ras knockdown and ONYX-411-mediated cancer cell lysis. A novel construct, termed Internavec (for interfering RNA vector), was generated by cloning a K-ras(v12)-specific siRNA(ras-4), hairpin construct under the control of the human HI promoter into the deleted E3b region of ONYX-411. Internavec acquired an increase in potency of similar to 10-fold in human cancer cells expressing the relevant K-ras 12 mutation (H79, H441, and SW480), as defined by a reduction in the effective dose needed to achieve 50% growth inhibition (ED50). Internavec remained attenuated in nonmalignant epithelial cells. Daily intratumoral injections of Internavec (five daily injections of 1 x 10(8) plaque-forming units) significantly reduced the growth of s.c. H79 pancreatic cancer xenografts in nu/nu mice by 85.5%, including complete growth suppression in three of five mice. Parental ONYX-411 or ONYX-411-siRNA(GFP) was markedly less effective (47.8% growth reduction, P = 0.03; and 44.1% growth reduction, P = 0.03, respectively). SiRNA(ras) transgene activity contributed to cell cycle blockage, increased apoptosis, and marked down-regulation of Ras signaling-related gene expression (AKT2, GSK3 beta, E2F2, and MAP4K5). These findings indicate that Internavec can generate a two-pronged attack on tumor cells through oncogene knockdown and viral oncolysis, resulting in a significantly enhanced antitumor outcome.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available