4.6 Article

Effect of chirality on buckling behavior of single-walled carbon nanotubes

Journal

JOURNAL OF APPLIED PHYSICS
Volume 100, Issue 7, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2355433

Keywords

-

Ask authors/readers for more resources

In this paper, molecular dynamics simulations (MDS) are performed on single-walled carbon nanotubes (SWCNTs) in order to study the effects of chirality on their buckling behavior under axial compression. In the MDS, the Tersoff-Brenner potential is used to describe the interaction of carbon atoms in the SWCNTs. The sensitivity of the buckling strains and buckling modes with respect to the chirality of SWCNT is investigated by modeling SWCNTs with different chiral angles, varying from 0 degrees to 30 degrees, but keeping the length-to-diameter ratio constant. The carbon nanotubes are also analyzed using a continuum cylindrical shell model based on the theory of nonlocal elasticity so as to assess its validity in predicting the buckling strains when compared with the results that are obtained by MDS. The differences between the buckling strains at the continuum scale and that at the nanoscale are also studied. The present analysis and results are helpful in understanding the buckling behaviors of axially compressed carbon nanotubes. This knowledge is important for the application of carbon nanotubes as building blocks of nanomechanical devices. (c) 2006 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available